top of page

PUBLICATIONS

Lee JQ, Brandon MP (2023) Time and experience are independent determinants of representational drift in CA1. Neuron. Aug 2;111(15)2275-2277.

In this issue of Neuron, Khatib et al. and Geva et al. present complementary and breakthrough discoveries demonstrating that elapsed time and active experience independently affect unique aspects of representational drift in the hippocampus.

Ying J, Reboreda A, Yoshida M, Brandon MP. (2023) Grid cell disruption in a mouse model of early Alzheimer’s disease reflects reduced integration of self-motion cues. Current Biology. Jun 19;33(12):2425-2437.

Converging evidence from human and rodent studies suggests that disrupted grid cell coding in the medial entorhinal cortex (MEC) underlies path integration behavioral deficits during early Alzheimer’s disease (AD). However, grid cell firing relies on both self-motion cues and environmental features, and it remains unclear whether disrupted grid coding can account for specific path integration deficits reported during early AD. Here, we report in the J20 transgenic amyloid beta (Aβ) mouse model of early AD that grid cells were spatially unstable toward the center of the arena, had qualitatively different spatial components that aligned parallel to the borders of the environment, and exhibited impaired integration of distance traveled via reduced theta phase precession. Our results suggest that disrupted early AD grid coding reflects reduced integration of self-motion cues but not environmental information via geometric boundaries, providing evidence that grid cell impairments underlie path integration deficits during early AD.

Ajabi Z, Keinath AT, Xuexin W, Brandon MP. (2023) Population dynamics of head direction system during drift and reorientation. Nature. 615, 892–899.

The head direction (HD) system functions as the brain’s internal compass1,2, classically formalized as a one dimensional ring attractor network3,4. In contrast to a globally consistent magnetic compass, the HD system does not have a universal reference frame. Instead, it anchors to local cues, maintaining a stable offset when cues rotate5–8 and drifting in the absence of referents5,8–10. However, questions about the mechanisms that underlie anchoring and drift remain unresolved and are best addressed at the population level. For example, the extent to which the one-dimensional description of population activity holds under conditions of reorientation and drift is unclear. Here we performed population recordings of thalamic HD cells using calcium imaging during controlled rotations of a visual landmark. Across experiments, population activity varied along a second dimension, which we refer to as network gain, especially under circumstances of cue conflict and ambiguity. Activity along this dimension predicted realignment and drift dynamics, including the speed of network realignment. In the dark, network gain maintained a ‘memory trace’ of the previously displayed landmark. Further experiments demonstrated that the HD network returned to its baseline orientation after brief, but not longer, exposures to a rotated cue. This experience dependence suggests that memory of previous associations between HD neurons and allocentric cues is maintained and influences the internal HD representation. Building on these results, we show that continuous rotation of a visual landmark induced rotation of the HD representation that persisted in darkness, demonstrating experience-dependent recalibration of the HD system. Finally, we propose a computational model to formalize how the neural compass flexibly adapts to changing environmental cues to maintain a reliable representation of HD. These results challenge classical one-dimensional interpretations of the HD system and provide insights into the interactions between this system and the cues to which it anchors.

Keinath AT, Mosser CA, Brandon MP. (2022) The representation of context in mouse hippocampus is preserved despite neural drift. Nature Communications. 13:2415.

The hippocampus is thought to mediate episodic memory through the instantiation and reinstatement of context-specific cognitive maps. However, recent longitudinal experiments have challenged this view, reporting that most hippocampal cells change their tuning properties over days even in the same environment. Often referred to as neural or representational drift, these dynamics raise questions about the capacity and content of the hippocampal code. One such question is whether and how these long-term dynamics impact the hippocampal code for context. To address this, we image large CA1 populations over more than a month of daily experience as freely behaving mice participate in an extended geometric morph paradigm. We find that long-timescale changes in population activity occur orthogonally to the representation of context in network space, allowing for consistent readout of contextual information across weeks. This population-level structure is supported by heterogeneous patterns of activity at the level of individual cells, where we observe evidence of a positive relationship between interpretable contextual coding and long-term stability. Together, these results demonstrate that long-timescale changes to the CA1 spatial code preserve the relative structure of contextual representation.

Ying J, Keinath AT, Lavoie R, Brandon MP. (2022) Disruption of the grid cell network in a mouse model of early Alzheimer’s disease. Nature Communications. 3l:886.

Early-onset familial Alzheimer’s disease (AD) is marked by an aggressive buildup of amyloid beta (Aβ) proteins, yet the neural circuit operations impacted during the initial stages of Aβ pathogenesis remain elusive. Here, we report a coding impairment of the medial entorhinal cortex (MEC) grid cell network in the J20 transgenic mouse model of familial AD that overexpresses Aβ throughout the hippocampus and entorhinal cortex. Grid cells showed reduced spatial periodicity, spatial stability, and synchrony with interneurons and head-direction cells. In contrast, the spatial coding of non-grid cells within the MEC, and place cells within the hippocampus, remained intact. Grid cell deficits emerged at the earliest incidence of Aβ fibril deposition and coincided with impaired spatial memory performance in a path integration task. These results demonstrate that widespread Aβ-mediated damage to the entorhinalhippocampal circuit results in an early impairment of the entorhinal grid cell network

Vladislava S*, Ying J*, Morgan E, Brandon MP, Wolbers T. (2021) Path integration in normal aging and Alzheimer’s disease. Trends in Cognitive Sciences. Feb;26(2):142-158.

In this review we discuss converging evidence from human and rodent research demonstrating how path integration (PI) is impaired in healthy aging and Alzheimer's disease (AD), and point to the neural mechanisms that underlie these deficits. Importantly, we highlight that (i) the grid cell network in the entorhinal cortex is crucial for PI in both humans and rodents, (ii) PI deficits are present in healthy aging and are significantly more pronounced in patients with early-stage AD, (iii) compromised entorhinal grid cell computations in healthy older adults and in young adults at risk of AD are linked to PI deficits, and (iv) PI and grid cell deficits may serve as sensitive markers for pathological decline in early AD.

Robinson JC, Brandon MP. (2021) Skipping ahead: A circuit for representing the past, present and future. Elife. Oct 14;10:e68795

Envisioning the future is intuitively linked to our ability to remember the past. Within the memory system, substantial work has demonstrated the involvement of the prefrontal cortex and the hippocampus in representing the past and present. Recent data shows that both the prefrontal cortex and the hippocampus encode future trajectories, which are segregated in time by alternating cycles of the theta rhythm. Here, we discuss how information is temporally organized by these brain regions supported by the medial septum, nucleus reuniens, and parahippocampal regions. Finally, we highlight a brain circuit that we predict is essential for the temporal segregation of future scenarios

Badrinarayanan S, Manseau F, Williams S, Brandon MP. (2021) A characterization of the electrophysiological and morphological properties of vasoactive intestinal peptide (VIP) interneurons in the medial entorhinal cortex (MEC). Front. Neural Circuits. 15:653116.

Circuit interactions within the medial entorhinal cortex (MEC) translate movement into a coherent code for spatial location. Entorhinal principal cells are subject to strong lateral inhibition, suggesting that a disinhibitory mechanism may drive their activation. Cortical Vasoactive Intestinal Peptide (VIP) expressing inhibitory neurons are known to contact other interneurons and excitatory cells and are thus capable of providing a local disinhibitory mechanism, yet little is known about this cell type in the MEC. To investigate the electrophysiological and morphological properties of VIP cells in the MEC, we use in vitro whole-cell patch-clamp recordings in VIPcre/tdTom mice. We report several gradients in electrophysiological properties of VIP cells that differ across laminae and along the dorsal-ventral MEC axis. We additionally show that VIP cells have distinct morphological features across laminae. Together, these results characterize the cellular and morphological properties of VIP cells in the MEC.

Favier M, Janickova H, Justo D, Kljakic O, Runtz L, Natsheh JY, Pascoal TA, Germann J, Gallino D, Kang J-I, Meng XQi, Antinora C, Raulic S, Jacobsen JPr, Moquin L, Vigneault E, Gratton A, Caron MG, Duriez P, Brandon MP, Rosa-Neto P, Chakravarty MM, Herzallah MM, Gorwood P, Prado MAm, Prado VF, Mestikawy SE. (2020). Cholinergic dysfunction in the dorsal striatum enhances habit formation and eating disorders. Journal of Clinical Investigations. 130(12): 6616-6630.

Dysregulation of habit formation has been recently proposed as pivotal to eating disorders. Here, we report that a subset of patients suffering from restrictive anorexia nervosa have enhanced habit formation compared with healthy controls. Habit formation is modulated by striatal cholinergic interneurons. These interneurons express vesicular transporters for acetylcholine (VAChT) and glutamate (VGLUT3) and use acetylcholine/glutamate cotransmission to regulate striatal functions. Using mice with genetically silenced VAChT (VAChT conditional KO, VAChTcKO) or VGLUT3 (VGLUT3cKO), we investigated the roles that acetylcholine and glutamate released by cholinergic interneurons play in habit formation and maladaptive eating. Silencing glutamate favored goal-directed behaviors and had no impact on eating behavior. In contrast, VAChTcKO mice were more prone to habits and maladaptive eating. Specific deletion of VAChT in the dorsomedial striatum of adult mice was sufficient to phenocopy maladaptive eating behaviors of VAChTcKO mice. Interestingly, VAChTcKO mice had reduced dopamine release in the dorsomedial striatum but not in the dorsolateral striatum. The dysfunctional eating behavior of VAChTcKO mice was alleviated by donepezil and by l-DOPA, confirming an acetylcholine/dopamine deficit. Our study reveals that loss of acetylcholine leads to a dopamine imbalance in striatal compartments, thereby promoting habits and vulnerability to maladaptive eating in mice.

Mosser CA, Haqqee Z, Nieto-Posadas A, Williams S, Brandon MP. (2021). The McGill-Mouse-Marmoset Platform: High-throughput Calcium Imaging of Neuronal Populations During Standardized Behavioral Tasks. Genes Brain and Behavior. Jan;20(1): n/a.

Understanding the rules that govern neuronal dynamics throughout the brain to subserve behavior and cognition remains one of the biggest challenges in neuroscience research. Recent technical advances enable the recording of increasingly larger neuronal populations to produce increasingly more sophisticated datasets. Despite bold and important open-science and data-sharing policies, these datasets tend to include unique data acquisition methods, behaviors, and file structures. Discrepancies between experimental protocols present key challenges in comparing data between laboratories and across different brain regions and species. Here, we discuss our recent efforts to create a standardized and high-throughput research platform to address these issues. The McGill-Mouse-Miniscope (M3) platform is an initiative to combine miniscope calcium imaging with standardized touchscreen-based animal behavioral testing. The goal is to curate an open-source and standardized framework for acquiring, analyzing, and accessing high-quality data of the neuronal dynamics that underly cognition throughout the brain in mice, marmosets, and models of disease. We end with a discussion of future developments and a call for users to adopt this standardized approach.

Keinath AT, Robinson J, Nieto-Posadas A, Brandon MP. (2020). DG-CA3 circuitry mediates hippocampal representations of latent information. Nature Communications. 11(3026): n/a.

Survival in complex environments necessitates a flexible navigation system that incorporates memory of recent behavior and associations. Yet, how the hippocampal spatial circuit represents latent information independent of sensory inputs and future goals has not been determined. To address this, we image the activity of large ensembles in subregion CA1 via wide-field fluorescent microscopy during a novel behavioral paradigm. Our results demonstrate that latent information is represented through reliable firing rate changes during unconstrained navigation. We then hypothesize that the representation of latent information in CA1 is mediated by pattern separation/completion processes instantiated upstream within the dentate gyrus (DG) and CA3 subregions. Indeed, CA3 ensemble recordings reveal an analogous code for latent information. Moreover, selective chemogenetic inactivation of DG–CA3 circuitry completely and reversibly abolishes the CA1 representation of latent information. These results reveal a causal and specific role of DG–CA3 circuitry in the maintenance of latent information within the hippocampus.

Wei X, Zhou D, Grosmark A, Ajabi Z, Sparks F, Zhou P, Brandon MP, Losonczy A, Paninski L. (2020). A zero-inflated gamma model for post-deconvolved calcium imaging traces. Neurons, Behavior, Data Analysis and Theory. 3(2): n/a.

Calcium imaging is a critical tool for measuring the activity of large neural populations. Much effort has been devoted to developing "pre-processing" tools for calcium video data, addressing the important issues of e.g., motion correction, denoising, compression, demixing, and deconvolution. However, statistical modeling of deconvolved calcium signals (i.e., the estimated activity extracted by a pre-processing pipeline) is just as critical for interpreting calcium measurements, and for incorporating these observations into downstream probabilistic encoding and decoding models. Surprisingly, these issues have to date received significantly less attention. In this work we examine the statistical properties of the deconvolved activity estimates, and compare probabilistic models for these random signals. In particular, we propose a zero-inflated gamma (ZIG) model, which characterizes the calcium responses as a mixture of a gamma distribution and a point mass that serves to model zero responses. We apply the resulting models to neural encoding and decoding problems. We find that the ZIG model outperforms simpler models (e.g., Poisson or Bernoulli models) in the context of both simulated and real neural data, and can therefore play a useful role in bridging calcium imaging analysis methods with tools for analyzing activity in large neural populations.

Zutshi I*, Brandon MP*, Fu ML, Donegan ML, Leutgeb LK, Leutgeb S. (2018) Hippocampal neural circuits respond to optogenetic pacing of theta frequencies by generating accelerate oscillation frequencies. Current Biology. Apr 23;28, 1-10.

* These authors contributed equally

Biological oscillations can be controlled by a small population of rhythmic pacemaker cells, or in the brain, they also can emerge from complex cellular and circuit-level interactions. Whether and how these mechanisms are combined to give rise to oscillatory patterns that govern cognitive function are not well understood. For example, the activity of hippocampal networks is temporally coordinated by a 7- to 9-Hz local field potential (LFP) theta rhythm, yet many individual cells decouple from the LFP frequency to oscillate at frequencies ∼1 Hz higher. To better understand the network interactions that produce these complex oscillatory patterns, we asked whether the relative frequency difference between LFP and individual cells is retained when the LFP frequency is perturbed experimentally. We found that rhythmic optogenetic stimulation of medial septal GABAergic neurons controlled the hippocampal LFP frequency outside of the endogenous theta range, even during behavioral states when endogenous mechanisms would otherwise have generated 7- to 9-Hz theta oscillations. While the LFP frequency matched the optogenetically induced stimulation frequency, the oscillation frequency of individual hippocampal cells remained broadly distributed, and in a subset of cells including interneurons, it was accelerated beyond the new base LFP frequency. The inputs from septal GABAergic neurons to the hippocampus, therefore, do not appear to directly control the cellular oscillation frequency but rather engage cellular and circuit mechanisms that accelerate the rhythmicity of individual cells. Thus, theta oscillations are an example of cortical oscillations that combine inputs from a subcortical pacemaker with local computations to generate complex oscillatory patterns that support cognitive functions.

Hinman JR, Brandon MP, Climer JR, Chapman WG, Hasselmo (2016) Multiple running speed signals in medial entorhinal cortex. Neuron. Aug 3;91(3):666-79.

Grid cells in medial entorhinal cortex (MEC) can be modeled using oscillatory interference or attractor dynamic mechanisms that perform path integration, a computation requiring information about running direction and speed. The two classes of computational models often use either an oscillatory frequency or a firing rate that increases as a function of running speed. Yet it is currently not known whether these are two manifestations of the same speed signal or dissociable signals with potentially different anatomical substrates. We examined coding of running speed in MEC and identified these two speed signals to be independent of each other within individual neurons. The medial septum (MS) is strongly linked to locomotor behavior, and removal of MS input resulted in strengthening of the firing rate speed signal, while decreasing the strength of the oscillatory speed signal. Thus, two speed signals are present in MEC that are differentially affected by disrupted MS input.

Kraus BJ, Brandon MP, Robinson RJ 2nd, Connerney MA, Hasselmo ME, Eichenbaum H. (2015) During running in place, grid cells integrate elapsed time and distance run. Neuron. Nov 4;88(3):578-89.

The spatial scale of grid cells may be provided by self-generated motion information or by external sensory information from environmental cues. To determine whether grid cell activity reflects distance traveled or elapsed time independent of external information, we recorded grid cells as animals ran in place on a treadmill. Grid cell activity was only weakly influenced by location, but most grid cells and other neurons recorded from the same electrodes strongly signaled a combination of distance and time, with some signaling only distance or time. Grid cells were more sharply tuned to time and distance than non-grid cells. Many grid cells exhibited multiple firing fields during treadmill running, parallel to the periodic firing fields observed in open fields, suggesting a common mode of information processing. These observations indicate that, in the absence of external dynamic cues, grid cells integrate self-generated distance and time information to encode a representation of experience.

Raudies F, Brandon MP, Chapman WG, Hasselmo ME (2015) Head direction is coded more strongly than movement direction in a population of entorhinal neurons. Brain Research. Sep 24;1621:355-67.

The spatial firing pattern of entorhinal grid cells may be important for navigation. Many different computational models of grid cell firing use path integration based on movement direction and the associated movement speed to drive grid cells. However, the response of neurons to movement direction has rarely been tested, in contrast to multiple studies showing responses of neurons to head direction. Here, we analyzed the difference between head direction and movement direction during rat movement and analyzed cells recorded from entorhinal cortex for their tuning to movement direction. During foraging behavior, movement direction differs significantly from head direction. The analysis of neuron responses shows that only 5 out of 758 medial entorhinal cells show significant coding for both movement direction and head direction when evaluating periods of rat behavior with speeds above 10 cm/s and ±30° angular difference between movement and head direction. None of the cells coded movement direction alone. In contrast, 21 cells in this population coded only head direction during behavioral epochs with these constraints, indicating much stronger coding of head direction in this population. This suggests that the movement direction signal required by most grid cell models may arise from other brain structures than the medial entorhinal cortex.

Schlesiger MI, Cannova CC, Boublil BL, Hales JB, Mankin EA, Brandon MP, Leutgeb JK, Leibold C, Leutgeb S (2015) The medial entorhinal cortex is necessary for temporal organization of hippocampal neuronal activity. Nature Neuroscience. Aug;18(8):1123-32.

The superficial layers of the medial entorhinal cortex (MEC) are a major input to the hippocampus. The high proportion of spatially modulated cells, including grid cells and border cells, in these layers suggests that MEC inputs are critical for the representation of space in the hippocampus. However, selective manipulations of the MEC do not completely abolish hippocampal spatial firing. To determine whether other hippocampal firing characteristics depend more critically on MEC inputs, we recorded from hippocampal CA1 cells in rats with MEC lesions. Theta phase precession was substantially disrupted, even during periods of stable spatial firing. Our findings indicate that MEC inputs to the hippocampus are required for the temporal organization of hippocampal firing patterns and suggest that cognitive functions that depend on precise neuronal sequences in the hippocampal theta cycle are particularly dependent on the MEC.

Brandon MP, Koenig J, Leutgeb JK, Leutgeb S. (2014) New and distinct hippocampal place codes are generated in a new environment during septal inactivation. Neuron. May 21;82(4):789-96.

The hippocampus generates distinct neural codes to disambiguate similar experiences, a process thought to underlie episodic memory function. Entorhinal grid cells provide a prominent spatial signal to hippocampus, and changes in their firing pattern could thus generate a distinct spatial code in each context. We examined whether we would preclude the emergence of new spatial representations in a novel environment during muscimol inactivation of the medial septal area, a manipulation known to disrupt theta oscillations and grid cell firing. We found that new, highly distinct configurations of place fields emerged immediately and remained stable during the septal inactivation. The new place code persisted when theta oscillations had recovered. Theta rhythmicity and feedforward input from grid cell networks were thus not required to generate newspatial representations in the hippocampus.

Brandon MP, Bogaard AR, Schultheiss NW, Hasselmo ME (2013) Segregation of cortical head direction cell assemblies on alternating theta cycles. Nature Neuroscience Jun;16(6):739-48.

High-level cortical systems for spatial navigation, including entorhinal grid cells, critically depend on input from the head direction system. We examined spiking rhythms and modes of synchrony between neurons participating in head direction networks for evidence of internal processing, independent of direct sensory drive, which may be important for grid cell function. We found that head direction networks of rats were segregated into at least two populations of neurons firing on alternate theta cycles (theta cycle skipping) with fixed synchronous or anti-synchronous relationships. Pairs of anti-synchronous theta cycle skipping neurons exhibited larger differences in head direction tuning, with a minimum difference of 40 degrees of head direction. Septal inactivation preserved the head direction signal, but eliminated theta cycle skipping of head direction cells and grid cell spatial periodicity. We propose that internal mechanisms underlying cycle skipping in head direction networks may be critical for downstream spatial computation by grid cells.

Brandon MP, Koenig J, Leutgeb S. (2013) Parallel and convergent processing in grid, head-direction, and place cell networks. WIREs Cogn Sci. doi 10.1002/wcs.1271

The brain is able to construct internal representations that correspond to external spatial coordinates. Such brain maps of the external spatial topography may support a number of cognitive functions, including navigation and memory. The neuronal building block of brain maps are place cells, which are found throughout the hippocampus of rodents and, in a lower proportion, primates. Place cells typically fire in one or few restricted areas of space, and each area where a cell fires can range, along the dorsoventral axis of the hippocampus, from 30 cm to at least several meters. The sensory processing streams that give rise to hippocampal place cells are not fully understood, but substantial progress has been made in characterizing the entorhinal cortex, which is the gateway between neocortical areas and the hippocampus. Entorhinal neurons have diverse spatial firing characteristics, and the different entorhinal cell types converge in the hippocampus to give rise to a single, spatially modulated cell type—the place cell. We therefore suggest that parallel information processing in different classes of cells—as is typically observed at lower levels of sensory processing—continues up into higher level association cortices, including those that provide the inputs to hippocampus. WIREs Cogn Sci 2014, 5:207–219.

Hasselmo ME & Brandon MP (2012) A model combining oscillations and attractor dynamics for generation of grid cell firing. Front Neural Circuits. 6:30

Different models have been able to account for different features of the data on grid cell firing properties, including the relationship of grid cells to cellular properties and network oscillations. This paper describes a model that combines elements of two major classes of models of grid cells: models using interactions of oscillations and models using attractor dynamics. This model includes a population of units with oscillatory input representing input from the medial septum. These units are termed heading angle cells because their connectivity depends upon heading angle in the environment as well as the spatial phase coded by the cell. These cells project to a population of grid cells. The sum of the heading angle input results in standing waves of circularly symmetric input to the grid cell population. Feedback from the grid cell population increases the activity of subsets of the heading angle cells, resulting in the network settling into activity patterns that resemble the patterns of firing fields in a population of grid cells. The properties of heading angle cells firing as conjunctive grid-by-head-direction cells can shift the grid cell firing according to movement velocity. The pattern of interaction of oscillations requires use of separate populations that fire on alternate cycles of the net theta rhythmic input to grid cells.

Brandon MP, Bogaard AR, Libby CP, Connerney MA, Gupta K, Hasselmo ME (2011) Reduction of Theta Rhythm Dissociates Grid Cell Spatial Periodicity from Directional Tuning. Science Apr 29;332(6029):595-9.

Grid cells recorded in the medial entorhinal cortex of freely moving rats exhibit firing at regular spatial locations and temporal modulation with theta rhythm oscillations (4 to 11 hertz). We analyzed grid cell spatial coding during reduction of network theta rhythm oscillations caused by medial septum (MS) inactivation with muscimol. During MS inactivation, grid cells lost their spatial periodicity, whereas head-direction cells maintained their selectivity. Conjunctive grid–by–head-direction cells lost grid cell spatial periodicity but retained head-direction specificity. All cells showed reduced rhythmicity in autocorrelations and cross-correlations. This supports the hypothesis that spatial coding by grid cells requires theta oscillations, and dissociates the mechanisms underlying the generation of entorhinal grid cell periodicity and head-direction selectivity.

Hasselmo ME, Giocomo LM, Brandon MP, Yoshida M (2010) Cellular dynamical mechanisms for encoding the time and place of events along spatiotemporal trajectories in episodic memory. Behav Brain Res. Dec 31;215(2):261-74.

Understanding the mechanisms of episodic memory requires linking behavioral data and lesion effects to data on the dynamics of cellular membrane potentials and population interactions within brain regions. Linking behavior to specific membrane channels and neurochemicals has implications for therapeutic applications. Lesions of the hippocampus, entorhinal cortex and subcortical nuclei impair episodic memory function in humans and animals, and unit recording data from these regions in behaving animals indicate episodic memory processes. Intracellular recording in these regions demonstrates specific cellular properties including resonance, membrane potential oscillations and bistable persistent spiking that could underlie the encoding and retrieval of episodic trajectories. A model presented here shows how intrinsic dynamical properties of neurons could mediate the encoding of episodic memories as complex spatiotemporal trajectories. The dynamics of neurons allow encoding and retrieval of unique episodic trajectories in multiple continuous dimensions including temporal intervals, personal location, the spatial coordinates and sensory features of perceived objects and generated actions, and associations between these elements. The model also addresses how cellular dynamics could underlie unit firing data suggesting mechanisms for coding continuous dimensions of space, time, sensation and action.

Brandon MP, Bogaard AR, Andrews CM, Hasselmo ME (2011) Head direction cells in the postsubiculum do not show replay of prior waking sequences during sleep. Hippocampus Mar;22(3)604-18.

uring slow-wave sleep (SWS) and rapid eye movement(REM) sleep, hippocampal place cells in the rat show replay of sequen-ces previously observed during waking. We tested the hypothesis fromcomputational modeling that the temporal structure of REM sleep replaycould arise from an interplay of place cells with head direction cells inthe postsubiculum. Physiological single-unit recording was performedsimultaneously from five or more head direction or place by headdirection cells in the postsubiculum during running on a circular trackallowing sampling of a full range of head directions, and during sleepperiods before and after running on the circular track. Data analysiscompared the spiking activity during individual REM periods withwaking as in previous analysis procedures for REM sleep. We also useda new procedure comparing groups of similar runs during waking withREM sleep periods. There was no consistent evidence for a statisticallysignificant correlation of the temporal structure of spiking during REMsleep with spiking during waking running periods. Thus, the spikingactivity of head direction cells during REM sleep does not show replayof head direction cell activity occurring during a previous waking periodof running on the task. In addition, we compared the spiking of postsu-biculum neurons during hippocampal sharp wave ripple events. Weshow that head direction cells are not activated during sharp wave rip-ples, whereas neurons responsive to place in the postsubiculum showreliable spiking at ripple events.VC2011 Wiley Periodicals, Inc.

Hasselmo ME, Brandon MP, Yoshida Y, Fransen E, Giocomo LM, Heys J, Newman E, Zilli E (2009) A phase code for memory could arise from circuit mechanisms in entorhinal cortex. Neural Networks Oct; 22(8):1129-38.

Neurophysiological data reveals intrinsic cellular properties that suggest how entorhinal cortical neurons could code memory by the phase of their firing. Potential cellular mechanisms for this phase coding in models of entorhinal function are reviewed. This mechanism for phase coding provides a substrate for modeling the responses of entorhinal grid cells, as well as the replay of neural spiking activity during waking and sleep. Efforts to implement these abstract models in more detailed biophysical compartmental simulations raise specific issues that could be addressed in larger scale population models incorporating mechanisms of inhibition.

Lee JQ, Brandon MP (2023) Time and experience are independent determinants of representational drift in CA1. Neuron. Aug 2;111(15)2275-2277.

In this issue of Neuron, Khatib et al. and Geva et al. present complementary and breakthrough discoveries demonstrating that elapsed time and active experience independently affect unique aspects of representational drift in the hippocampus.

2023

Ying J, Reboreda A, Yoshida M, Brandon MP. (2023) Grid cell disruption in a mouse model of early Alzheimer’s disease reflects reduced integration of self-motion cues. Current Biology. Jun 19;33(12):2425-2437.

Converging evidence from human and rodent studies suggests that disrupted grid cell coding in the medial entorhinal cortex (MEC) underlies path integration behavioral deficits during early Alzheimer’s disease (AD). However, grid cell firing relies on both self-motion cues and environmental features, and it remains unclear whether disrupted grid coding can account for specific path integration deficits reported during early AD. Here, we report in the J20 transgenic amyloid beta (Aβ) mouse model of early AD that grid cells were spatially unstable toward the center of the arena, had qualitatively different spatial components that aligned parallel to the borders of the environment, and exhibited impaired integration of distance traveled via reduced theta phase precession. Our results suggest that disrupted early AD grid coding reflects reduced integration of self-motion cues but not environmental information via geometric boundaries, providing evidence that grid cell impairments underlie path integration deficits during early AD.

Ajabi Z, Keinath AT, Xuexin W, Brandon MP. (2023) Population dynamics of head direction system during drift and reorientation. Nature. 615, 892–899.

The head direction (HD) system functions as the brain’s internal compass1,2, classically formalized as a one dimensional ring attractor network3,4. In contrast to a globally consistent magnetic compass, the HD system does not have a universal reference frame. Instead, it anchors to local cues, maintaining a stable offset when cues rotate5–8 and drifting in the absence of referents5,8–10. However, questions about the mechanisms that underlie anchoring and drift remain unresolved and are best addressed at the population level. For example, the extent to which the one-dimensional description of population activity holds under conditions of reorientation and drift is unclear. Here we performed population recordings of thalamic HD cells using calcium imaging during controlled rotations of a visual landmark. Across experiments, population activity varied along a second dimension, which we refer to as network gain, especially under circumstances of cue conflict and ambiguity. Activity along this dimension predicted realignment and drift dynamics, including the speed of network realignment. In the dark, network gain maintained a ‘memory trace’ of the previously displayed landmark. Further experiments demonstrated that the HD network returned to its baseline orientation after brief, but not longer, exposures to a rotated cue. This experience dependence suggests that memory of previous associations between HD neurons and allocentric cues is maintained and influences the internal HD representation. Building on these results, we show that continuous rotation of a visual landmark induced rotation of the HD representation that persisted in darkness, demonstrating experience-dependent recalibration of the HD system. Finally, we propose a computational model to formalize how the neural compass flexibly adapts to changing environmental cues to maintain a reliable representation of HD. These results challenge classical one-dimensional interpretations of the HD system and provide insights into the interactions between this system and the cues to which it anchors.

Keinath AT, Mosser CA, Brandon MP. (2022) The representation of context in mouse hippocampus is preserved despite neural drift. Nature Communications. 13:2415.

The hippocampus is thought to mediate episodic memory through the instantiation and reinstatement of context-specific cognitive maps. However, recent longitudinal experiments have challenged this view, reporting that most hippocampal cells change their tuning properties over days even in the same environment. Often referred to as neural or representational drift, these dynamics raise questions about the capacity and content of the hippocampal code. One such question is whether and how these long-term dynamics impact the hippocampal code for context. To address this, we image large CA1 populations over more than a month of daily experience as freely behaving mice participate in an extended geometric morph paradigm. We find that long-timescale changes in population activity occur orthogonally to the representation of context in network space, allowing for consistent readout of contextual information across weeks. This population-level structure is supported by heterogeneous patterns of activity at the level of individual cells, where we observe evidence of a positive relationship between interpretable contextual coding and long-term stability. Together, these results demonstrate that long-timescale changes to the CA1 spatial code preserve the relative structure of contextual representation.

2022

Ying J, Keinath AT, Lavoie R, Brandon MP. (2022) Disruption of the grid cell network in a mouse model of early Alzheimer’s disease. Nature Communications. 3l:886.

Early-onset familial Alzheimer’s disease (AD) is marked by an aggressive buildup of amyloid beta (Aβ) proteins, yet the neural circuit operations impacted during the initial stages of Aβ pathogenesis remain elusive. Here, we report a coding impairment of the medial entorhinal cortex (MEC) grid cell network in the J20 transgenic mouse model of familial AD that overexpresses Aβ throughout the hippocampus and entorhinal cortex. Grid cells showed reduced spatial periodicity, spatial stability, and synchrony with interneurons and head-direction cells. In contrast, the spatial coding of non-grid cells within the MEC, and place cells within the hippocampus, remained intact. Grid cell deficits emerged at the earliest incidence of Aβ fibril deposition and coincided with impaired spatial memory performance in a path integration task. These results demonstrate that widespread Aβ-mediated damage to the entorhinalhippocampal circuit results in an early impairment of the entorhinal grid cell network

Vladislava S*, Ying J*, Morgan E, Brandon MP, Wolbers T. (2021) Path integration in normal aging and Alzheimer’s disease. Trends in Cognitive Sciences. Feb;26(2):142-158.

In this review we discuss converging evidence from human and rodent research demonstrating how path integration (PI) is impaired in healthy aging and Alzheimer's disease (AD), and point to the neural mechanisms that underlie these deficits. Importantly, we highlight that (i) the grid cell network in the entorhinal cortex is crucial for PI in both humans and rodents, (ii) PI deficits are present in healthy aging and are significantly more pronounced in patients with early-stage AD, (iii) compromised entorhinal grid cell computations in healthy older adults and in young adults at risk of AD are linked to PI deficits, and (iv) PI and grid cell deficits may serve as sensitive markers for pathological decline in early AD.

2021

Robinson JC, Brandon MP. (2021) Skipping ahead: A circuit for representing the past, present and future. Elife. Oct 14;10:e68795

Envisioning the future is intuitively linked to our ability to remember the past. Within the memory system, substantial work has demonstrated the involvement of the prefrontal cortex and the hippocampus in representing the past and present. Recent data shows that both the prefrontal cortex and the hippocampus encode future trajectories, which are segregated in time by alternating cycles of the theta rhythm. Here, we discuss how information is temporally organized by these brain regions supported by the medial septum, nucleus reuniens, and parahippocampal regions. Finally, we highlight a brain circuit that we predict is essential for the temporal segregation of future scenarios

Badrinarayanan S, Manseau F, Williams S, Brandon MP. (2021) A characterization of the electrophysiological and morphological properties of vasoactive intestinal peptide (VIP) interneurons in the medial entorhinal cortex (MEC). Front. Neural Circuits. 15:653116.

Circuit interactions within the medial entorhinal cortex (MEC) translate movement into a coherent code for spatial location. Entorhinal principal cells are subject to strong lateral inhibition, suggesting that a disinhibitory mechanism may drive their activation. Cortical Vasoactive Intestinal Peptide (VIP) expressing inhibitory neurons are known to contact other interneurons and excitatory cells and are thus capable of providing a local disinhibitory mechanism, yet little is known about this cell type in the MEC. To investigate the electrophysiological and morphological properties of VIP cells in the MEC, we use in vitro whole-cell patch-clamp recordings in VIPcre/tdTom mice. We report several gradients in electrophysiological properties of VIP cells that differ across laminae and along the dorsal-ventral MEC axis. We additionally show that VIP cells have distinct morphological features across laminae. Together, these results characterize the cellular and morphological properties of VIP cells in the MEC.

Favier M, Janickova H, Justo D, Kljakic O, Runtz L, Natsheh JY, Pascoal TA, Germann J, Gallino D, Kang J-I, Meng XQi, Antinora C, Raulic S, Jacobsen JPr, Moquin L, Vigneault E, Gratton A, Caron MG, Duriez P, Brandon MP, Rosa-Neto P, Chakravarty MM, Herzallah MM, Gorwood P, Prado MAm, Prado VF, Mestikawy SE. (2020). Cholinergic dysfunction in the dorsal striatum enhances habit formation and eating disorders. Journal of Clinical Investigations. 130(12): 6616-6630.

Dysregulation of habit formation has been recently proposed as pivotal to eating disorders. Here, we report that a subset of patients suffering from restrictive anorexia nervosa have enhanced habit formation compared with healthy controls. Habit formation is modulated by striatal cholinergic interneurons. These interneurons express vesicular transporters for acetylcholine (VAChT) and glutamate (VGLUT3) and use acetylcholine/glutamate cotransmission to regulate striatal functions. Using mice with genetically silenced VAChT (VAChT conditional KO, VAChTcKO) or VGLUT3 (VGLUT3cKO), we investigated the roles that acetylcholine and glutamate released by cholinergic interneurons play in habit formation and maladaptive eating. Silencing glutamate favored goal-directed behaviors and had no impact on eating behavior. In contrast, VAChTcKO mice were more prone to habits and maladaptive eating. Specific deletion of VAChT in the dorsomedial striatum of adult mice was sufficient to phenocopy maladaptive eating behaviors of VAChTcKO mice. Interestingly, VAChTcKO mice had reduced dopamine release in the dorsomedial striatum but not in the dorsolateral striatum. The dysfunctional eating behavior of VAChTcKO mice was alleviated by donepezil and by l-DOPA, confirming an acetylcholine/dopamine deficit. Our study reveals that loss of acetylcholine leads to a dopamine imbalance in striatal compartments, thereby promoting habits and vulnerability to maladaptive eating in mice.

2020

Mosser CA, Haqqee Z, Nieto-Posadas A, Williams S, Brandon MP. (2021). The McGill-Mouse-Marmoset Platform: High-throughput Calcium Imaging of Neuronal Populations During Standardized Behavioral Tasks. Genes Brain and Behavior. Jan;20(1): n/a.

Understanding the rules that govern neuronal dynamics throughout the brain to subserve behavior and cognition remains one of the biggest challenges in neuroscience research. Recent technical advances enable the recording of increasingly larger neuronal populations to produce increasingly more sophisticated datasets. Despite bold and important open-science and data-sharing policies, these datasets tend to include unique data acquisition methods, behaviors, and file structures. Discrepancies between experimental protocols present key challenges in comparing data between laboratories and across different brain regions and species. Here, we discuss our recent efforts to create a standardized and high-throughput research platform to address these issues. The McGill-Mouse-Miniscope (M3) platform is an initiative to combine miniscope calcium imaging with standardized touchscreen-based animal behavioral testing. The goal is to curate an open-source and standardized framework for acquiring, analyzing, and accessing high-quality data of the neuronal dynamics that underly cognition throughout the brain in mice, marmosets, and models of disease. We end with a discussion of future developments and a call for users to adopt this standardized approach.

Keinath AT, Robinson J, Nieto-Posadas A, Brandon MP. (2020). DG-CA3 circuitry mediates hippocampal representations of latent information. Nature Communications. 11(3026): n/a.

Survival in complex environments necessitates a flexible navigation system that incorporates memory of recent behavior and associations. Yet, how the hippocampal spatial circuit represents latent information independent of sensory inputs and future goals has not been determined. To address this, we image the activity of large ensembles in subregion CA1 via wide-field fluorescent microscopy during a novel behavioral paradigm. Our results demonstrate that latent information is represented through reliable firing rate changes during unconstrained navigation. We then hypothesize that the representation of latent information in CA1 is mediated by pattern separation/completion processes instantiated upstream within the dentate gyrus (DG) and CA3 subregions. Indeed, CA3 ensemble recordings reveal an analogous code for latent information. Moreover, selective chemogenetic inactivation of DG–CA3 circuitry completely and reversibly abolishes the CA1 representation of latent information. These results reveal a causal and specific role of DG–CA3 circuitry in the maintenance of latent information within the hippocampus.

Wei X, Zhou D, Grosmark A, Ajabi Z, Sparks F, Zhou P, Brandon MP, Losonczy A, Paninski L. (2020). A zero-inflated gamma model for post-deconvolved calcium imaging traces. Neurons, Behavior, Data Analysis and Theory. 3(2): n/a.

Calcium imaging is a critical tool for measuring the activity of large neural populations. Much effort has been devoted to developing "pre-processing" tools for calcium video data, addressing the important issues of e.g., motion correction, denoising, compression, demixing, and deconvolution. However, statistical modeling of deconvolved calcium signals (i.e., the estimated activity extracted by a pre-processing pipeline) is just as critical for interpreting calcium measurements, and for incorporating these observations into downstream probabilistic encoding and decoding models. Surprisingly, these issues have to date received significantly less attention. In this work we examine the statistical properties of the deconvolved activity estimates, and compare probabilistic models for these random signals. In particular, we propose a zero-inflated gamma (ZIG) model, which characterizes the calcium responses as a mixture of a gamma distribution and a point mass that serves to model zero responses. We apply the resulting models to neural encoding and decoding problems. We find that the ZIG model outperforms simpler models (e.g., Poisson or Bernoulli models) in the context of both simulated and real neural data, and can therefore play a useful role in bridging calcium imaging analysis methods with tools for analyzing activity in large neural populations.

Zutshi I*, Brandon MP*, Fu ML, Donegan ML, Leutgeb LK, Leutgeb S. (2018) Hippocampal neural circuits respond to optogenetic pacing of theta frequencies by generating accelerate oscillation frequencies. Current Biology. Apr 23;28, 1-10.

* These authors contributed equally

Biological oscillations can be controlled by a small population of rhythmic pacemaker cells, or in the brain, they also can emerge from complex cellular and circuit-level interactions. Whether and how these mechanisms are combined to give rise to oscillatory patterns that govern cognitive function are not well understood. For example, the activity of hippocampal networks is temporally coordinated by a 7- to 9-Hz local field potential (LFP) theta rhythm, yet many individual cells decouple from the LFP frequency to oscillate at frequencies ∼1 Hz higher. To better understand the network interactions that produce these complex oscillatory patterns, we asked whether the relative frequency difference between LFP and individual cells is retained when the LFP frequency is perturbed experimentally. We found that rhythmic optogenetic stimulation of medial septal GABAergic neurons controlled the hippocampal LFP frequency outside of the endogenous theta range, even during behavioral states when endogenous mechanisms would otherwise have generated 7- to 9-Hz theta oscillations. While the LFP frequency matched the optogenetically induced stimulation frequency, the oscillation frequency of individual hippocampal cells remained broadly distributed, and in a subset of cells including interneurons, it was accelerated beyond the new base LFP frequency. The inputs from septal GABAergic neurons to the hippocampus, therefore, do not appear to directly control the cellular oscillation frequency but rather engage cellular and circuit mechanisms that accelerate the rhythmicity of individual cells. Thus, theta oscillations are an example of cortical oscillations that combine inputs from a subcortical pacemaker with local computations to generate complex oscillatory patterns that support cognitive functions.

2018

Hinman JR, Brandon MP, Climer JR, Chapman WG, Hasselmo (2016) Multiple running speed signals in medial entorhinal cortex. Neuron. Aug 3;91(3):666-79.

Grid cells in medial entorhinal cortex (MEC) can be modeled using oscillatory interference or attractor dynamic mechanisms that perform path integration, a computation requiring information about running direction and speed. The two classes of computational models often use either an oscillatory frequency or a firing rate that increases as a function of running speed. Yet it is currently not known whether these are two manifestations of the same speed signal or dissociable signals with potentially different anatomical substrates. We examined coding of running speed in MEC and identified these two speed signals to be independent of each other within individual neurons. The medial septum (MS) is strongly linked to locomotor behavior, and removal of MS input resulted in strengthening of the firing rate speed signal, while decreasing the strength of the oscillatory speed signal. Thus, two speed signals are present in MEC that are differentially affected by disrupted MS input.

2016

Kraus BJ, Brandon MP, Robinson RJ 2nd, Connerney MA, Hasselmo ME, Eichenbaum H. (2015) During running in place, grid cells integrate elapsed time and distance run. Neuron. Nov 4;88(3):578-89.

The spatial scale of grid cells may be provided by self-generated motion information or by external sensory information from environmental cues. To determine whether grid cell activity reflects distance traveled or elapsed time independent of external information, we recorded grid cells as animals ran in place on a treadmill. Grid cell activity was only weakly influenced by location, but most grid cells and other neurons recorded from the same electrodes strongly signaled a combination of distance and time, with some signaling only distance or time. Grid cells were more sharply tuned to time and distance than non-grid cells. Many grid cells exhibited multiple firing fields during treadmill running, parallel to the periodic firing fields observed in open fields, suggesting a common mode of information processing. These observations indicate that, in the absence of external dynamic cues, grid cells integrate self-generated distance and time information to encode a representation of experience.

2015

Raudies F, Brandon MP, Chapman WG, Hasselmo ME (2015) Head direction is coded more strongly than movement direction in a population of entorhinal neurons. Brain Research. Sep 24;1621:355-67.

The spatial firing pattern of entorhinal grid cells may be important for navigation. Many different computational models of grid cell firing use path integration based on movement direction and the associated movement speed to drive grid cells. However, the response of neurons to movement direction has rarely been tested, in contrast to multiple studies showing responses of neurons to head direction. Here, we analyzed the difference between head direction and movement direction during rat movement and analyzed cells recorded from entorhinal cortex for their tuning to movement direction. During foraging behavior, movement direction differs significantly from head direction. The analysis of neuron responses shows that only 5 out of 758 medial entorhinal cells show significant coding for both movement direction and head direction when evaluating periods of rat behavior with speeds above 10 cm/s and ±30° angular difference between movement and head direction. None of the cells coded movement direction alone. In contrast, 21 cells in this population coded only head direction during behavioral epochs with these constraints, indicating much stronger coding of head direction in this population. This suggests that the movement direction signal required by most grid cell models may arise from other brain structures than the medial entorhinal cortex.

Schlesiger MI, Cannova CC, Boublil BL, Hales JB, Mankin EA, Brandon MP, Leutgeb JK, Leibold C, Leutgeb S (2015) The medial entorhinal cortex is necessary for temporal organization of hippocampal neuronal activity. Nature Neuroscience. Aug;18(8):1123-32.

The superficial layers of the medial entorhinal cortex (MEC) are a major input to the hippocampus. The high proportion of spatially modulated cells, including grid cells and border cells, in these layers suggests that MEC inputs are critical for the representation of space in the hippocampus. However, selective manipulations of the MEC do not completely abolish hippocampal spatial firing. To determine whether other hippocampal firing characteristics depend more critically on MEC inputs, we recorded from hippocampal CA1 cells in rats with MEC lesions. Theta phase precession was substantially disrupted, even during periods of stable spatial firing. Our findings indicate that MEC inputs to the hippocampus are required for the temporal organization of hippocampal firing patterns and suggest that cognitive functions that depend on precise neuronal sequences in the hippocampal theta cycle are particularly dependent on the MEC.

Brandon MP, Koenig J, Leutgeb JK, Leutgeb S. (2014) New and distinct hippocampal place codes are generated in a new environment during septal inactivation. Neuron. May 21;82(4):789-96.

The hippocampus generates distinct neural codes to disambiguate similar experiences, a process thought to underlie episodic memory function. Entorhinal grid cells provide a prominent spatial signal to hippocampus, and changes in their firing pattern could thus generate a distinct spatial code in each context. We examined whether we would preclude the emergence of new spatial representations in a novel environment during muscimol inactivation of the medial septal area, a manipulation known to disrupt theta oscillations and grid cell firing. We found that new, highly distinct configurations of place fields emerged immediately and remained stable during the septal inactivation. The new place code persisted when theta oscillations had recovered. Theta rhythmicity and feedforward input from grid cell networks were thus not required to generate newspatial representations in the hippocampus.

2014

Brandon MP, Bogaard AR, Schultheiss NW, Hasselmo ME (2013) Segregation of cortical head direction cell assemblies on alternating theta cycles. Nature Neuroscience Jun;16(6):739-48.

High-level cortical systems for spatial navigation, including entorhinal grid cells, critically depend on input from the head direction system. We examined spiking rhythms and modes of synchrony between neurons participating in head direction networks for evidence of internal processing, independent of direct sensory drive, which may be important for grid cell function. We found that head direction networks of rats were segregated into at least two populations of neurons firing on alternate theta cycles (theta cycle skipping) with fixed synchronous or anti-synchronous relationships. Pairs of anti-synchronous theta cycle skipping neurons exhibited larger differences in head direction tuning, with a minimum difference of 40 degrees of head direction. Septal inactivation preserved the head direction signal, but eliminated theta cycle skipping of head direction cells and grid cell spatial periodicity. We propose that internal mechanisms underlying cycle skipping in head direction networks may be critical for downstream spatial computation by grid cells.

2013

Brandon MP, Koenig J, Leutgeb S. (2013) Parallel and convergent processing in grid, head-direction, and place cell networks. WIREs Cogn Sci. doi 10.1002/wcs.1271

The brain is able to construct internal representations that correspond to external spatial coordinates. Such brain maps of the external spatial topography may support a number of cognitive functions, including navigation and memory. The neuronal building block of brain maps are place cells, which are found throughout the hippocampus of rodents and, in a lower proportion, primates. Place cells typically fire in one or few restricted areas of space, and each area where a cell fires can range, along the dorsoventral axis of the hippocampus, from 30 cm to at least several meters. The sensory processing streams that give rise to hippocampal place cells are not fully understood, but substantial progress has been made in characterizing the entorhinal cortex, which is the gateway between neocortical areas and the hippocampus. Entorhinal neurons have diverse spatial firing characteristics, and the different entorhinal cell types converge in the hippocampus to give rise to a single, spatially modulated cell type—the place cell. We therefore suggest that parallel information processing in different classes of cells—as is typically observed at lower levels of sensory processing—continues up into higher level association cortices, including those that provide the inputs to hippocampus. WIREs Cogn Sci 2014, 5:207–219.

Hasselmo ME & Brandon MP (2012) A model combining oscillations and attractor dynamics for generation of grid cell firing. Front Neural Circuits. 6:30

Different models have been able to account for different features of the data on grid cell firing properties, including the relationship of grid cells to cellular properties and network oscillations. This paper describes a model that combines elements of two major classes of models of grid cells: models using interactions of oscillations and models using attractor dynamics. This model includes a population of units with oscillatory input representing input from the medial septum. These units are termed heading angle cells because their connectivity depends upon heading angle in the environment as well as the spatial phase coded by the cell. These cells project to a population of grid cells. The sum of the heading angle input results in standing waves of circularly symmetric input to the grid cell population. Feedback from the grid cell population increases the activity of subsets of the heading angle cells, resulting in the network settling into activity patterns that resemble the patterns of firing fields in a population of grid cells. The properties of heading angle cells firing as conjunctive grid-by-head-direction cells can shift the grid cell firing according to movement velocity. The pattern of interaction of oscillations requires use of separate populations that fire on alternate cycles of the net theta rhythmic input to grid cells.

2012

Brandon MP, Bogaard AR, Libby CP, Connerney MA, Gupta K, Hasselmo ME (2011) Reduction of Theta Rhythm Dissociates Grid Cell Spatial Periodicity from Directional Tuning. Science Apr 29;332(6029):595-9.

Grid cells recorded in the medial entorhinal cortex of freely moving rats exhibit firing at regular spatial locations and temporal modulation with theta rhythm oscillations (4 to 11 hertz). We analyzed grid cell spatial coding during reduction of network theta rhythm oscillations caused by medial septum (MS) inactivation with muscimol. During MS inactivation, grid cells lost their spatial periodicity, whereas head-direction cells maintained their selectivity. Conjunctive grid–by–head-direction cells lost grid cell spatial periodicity but retained head-direction specificity. All cells showed reduced rhythmicity in autocorrelations and cross-correlations. This supports the hypothesis that spatial coding by grid cells requires theta oscillations, and dissociates the mechanisms underlying the generation of entorhinal grid cell periodicity and head-direction selectivity.

2011

Hasselmo ME, Giocomo LM, Brandon MP, Yoshida M (2010) Cellular dynamical mechanisms for encoding the time and place of events along spatiotemporal trajectories in episodic memory. Behav Brain Res. Dec 31;215(2):261-74.

Understanding the mechanisms of episodic memory requires linking behavioral data and lesion effects to data on the dynamics of cellular membrane potentials and population interactions within brain regions. Linking behavior to specific membrane channels and neurochemicals has implications for therapeutic applications. Lesions of the hippocampus, entorhinal cortex and subcortical nuclei impair episodic memory function in humans and animals, and unit recording data from these regions in behaving animals indicate episodic memory processes. Intracellular recording in these regions demonstrates specific cellular properties including resonance, membrane potential oscillations and bistable persistent spiking that could underlie the encoding and retrieval of episodic trajectories. A model presented here shows how intrinsic dynamical properties of neurons could mediate the encoding of episodic memories as complex spatiotemporal trajectories. The dynamics of neurons allow encoding and retrieval of unique episodic trajectories in multiple continuous dimensions including temporal intervals, personal location, the spatial coordinates and sensory features of perceived objects and generated actions, and associations between these elements. The model also addresses how cellular dynamics could underlie unit firing data suggesting mechanisms for coding continuous dimensions of space, time, sensation and action.

2010

Brandon MP, Bogaard AR, Andrews CM, Hasselmo ME (2011) Head direction cells in the postsubiculum do not show replay of prior waking sequences during sleep. Hippocampus Mar;22(3)604-18.

uring slow-wave sleep (SWS) and rapid eye movement(REM) sleep, hippocampal place cells in the rat show replay of sequen-ces previously observed during waking. We tested the hypothesis fromcomputational modeling that the temporal structure of REM sleep replaycould arise from an interplay of place cells with head direction cells inthe postsubiculum. Physiological single-unit recording was performedsimultaneously from five or more head direction or place by headdirection cells in the postsubiculum during running on a circular trackallowing sampling of a full range of head directions, and during sleepperiods before and after running on the circular track. Data analysiscompared the spiking activity during individual REM periods withwaking as in previous analysis procedures for REM sleep. We also useda new procedure comparing groups of similar runs during waking withREM sleep periods. There was no consistent evidence for a statisticallysignificant correlation of the temporal structure of spiking during REMsleep with spiking during waking running periods. Thus, the spikingactivity of head direction cells during REM sleep does not show replayof head direction cell activity occurring during a previous waking periodof running on the task. In addition, we compared the spiking of postsu-biculum neurons during hippocampal sharp wave ripple events. Weshow that head direction cells are not activated during sharp wave rip-ples, whereas neurons responsive to place in the postsubiculum showreliable spiking at ripple events.VC2011 Wiley Periodicals, Inc.

Hasselmo ME, Brandon MP, Yoshida Y, Fransen E, Giocomo LM, Heys J, Newman E, Zilli E (2009) A phase code for memory could arise from circuit mechanisms in entorhinal cortex. Neural Networks Oct; 22(8):1129-38.

Neurophysiological data reveals intrinsic cellular properties that suggest how entorhinal cortical neurons could code memory by the phase of their firing. Potential cellular mechanisms for this phase coding in models of entorhinal function are reviewed. This mechanism for phase coding provides a substrate for modeling the responses of entorhinal grid cells, as well as the replay of neural spiking activity during waking and sleep. Efforts to implement these abstract models in more detailed biophysical compartmental simulations raise specific issues that could be addressed in larger scale population models incorporating mechanisms of inhibition.

2009

bottom of page